The Molecular Association of Some Carboxylic Acids in Aqueous Solutions from Conductivity Data.

By D. R. CARTWRIGHT and C. B. MONK.

[Reprint Order No. 6198.]

From conductivity measurements with hydrochloric acid in aqueous dioxan and aqueous acetone, the product $\Lambda \eta / \eta_0$ (where η and η_0 are the viscosities of solvent and water) is found to be almost constant up to $\eta / \eta_0 = 1 \cdot 1$. The measured conductivities of formic, acetic, propionic, and *n*-butyric acid solutions, which are assumed to be similarly influenced by the solvent viscosities, after correction, have been used to obtain the dimerisation constants of these acids in aqueous solution at 25°.

The thermodynamic dissociation constants (K_a) of many carboxylic acids in aqueous solution have been obtained by conductivity measurements. Where a considerable concentration range has been covered, K_a decreases with the concentration, and Katchalsky, Eisenberg, and Lifson (*J. Amer. Chem. Soc.*, 1951, 73, 5889) considered that this can be attributed to dimerisation. Their value for the dimer dissociation constant K_d , where $K_d = [HA]^2/[H_2A_2]$, is 6.2 for acetic acid, which is in good agreement with 5.4 derived by MacDougall and Blumer (*ibid.*, 1933, 55, 2236) from vapour pressures. However, as Davies and Griffiths (Z. physikal. Chem., Neue Folge, 1954, 2, 353) have pointed out, MacDougall and Blumer's figure is based upon erroneous data, and a more reasonable estimate gives $K_d = 20 \pm 3$ by this method. Davies and Griffiths themselves (loc. cit.), from careful analyses of freezing-point and distribution measurements, obtained $K_d \sim 30$. These last two values therefore suggest that the figure of 6.2 from conductivities is too small, and a reason for this may be the neglect of the viscosities of acetic acid solutions, which increase with the acid concentration.

This point has been considered by Davies (J. Amer. Chem. Soc., 1932, 54, 3776) with reference to the evaluation of the dissociation constant K_a . MacInnes and Shedlovsky's conductivity measurements (*ibid.*, p. 1429) lead to concentration dissociation constants, and when the log values of these are plotted against c_i (where c_i is the ionic concentration), the plot should be linear with a slope value of 2×0.509 , according to Debye and Hückel's theory. Above an acid concentration of 0.01N, however, the plot curves sharply. Davies showed (*loc. cit.*) that if Λ_{η}/η_0 is used instead of Λ , where η is the viscosity of the solution and η_0 is that of water, the plot is linear to much higher concentrations.

It is well known that correction of conductivities by the factor η/η_0 is not exactly substantiated by experiment, and to obtain some information on the error which can result in the present circumstances, the conductivity of hydrochloric acid in dioxan-water and acetone-water has been examined. Although Owen and Waters (*ibid.*, 1938, **60**, 2371) have reported measurements with the first of these solvents, they did not cover the region between water and 20% dioxan. In Table 1 we report measurements in 5% and 10%

TABLE 1. Conductivity of hydrochloric acid in 5% and 10% dioxan at 25°.

5% Dioxan, $B = 160.8$, $\Lambda^{\circ} = 393.7$.							
10 ⁴ c	2.4748	3 ·3398	3.5131	4 ·2221	4.9860	6 ∙0860	
Λ	391 ·0 4	390 ·78	390.62	3 90·42	3 89·99	3 89·89	
	10)% Dioxan,	B = 154.9	, Λ° = 366·	3.		
10 ⁴ c	$2 \cdot 6665$	3·2453	3·3 436	4 ·2 33 9	4 ·9112	5-06 10	5·7660
Λ	363·6 5	362·9 0	362.72	362.32	36 1•79	361.71	361·47

mixtures. The values of Λ° were obtained by plotting $\Lambda + Bc^{\dagger}$ against c, and extrapolating to c = 0; B is the theoretical Onsager slope and c is the concentration in equivs. per l.

Brownson and Cray (J., 1925, 127, 2923) have measured the conductivity of this acid in aqueous acetone. An obsolete method of deriving the cell constant was used, and a correction has been made by comparing their figures in water with those of Shedlovsky (J. Amer. Chem. Soc., 1932, 54, 1411) and multiplying the figures in aqueous acetone by the factors derived from the water figures (see Table 2).

TABLE 2	Condi	uctivity o	f hydrochi	loric acid	in aqueou	s acetone	e at 20°.	
10 ⁴ c	4.00	10.0	20.0	40 ·0	100-0	200.0	۸°	В
8% Acetone	3 50·8	349-3	347.7	345.4	34 1·9	33 6·9	3 53·5	140
16.4% Acetone	298 ·9	297.5	295.9	294·3	291·0	287.6	301.5	132

The products $\Lambda^{\circ}\eta/\eta_0$ given by the above data are shown in Table 3. They increase by about 4% for a 25% increase in viscosity with dioxan-water and decrease by the same amount for a similar increase in the viscosity of the acetone-water solvent. The nature of the organic constituent evidently has some influence.

				-
TABLE 3.	Limiting conductivities,	viscosities,	and $\Lambda^{\circ}\eta/\eta_{0}$ t	alues.

Solvent	Λ°	10 * η	$\Lambda^{\circ}\eta/\eta_{0}$	Solvent	۸°	10ªη	$\Lambda^{\circ}\eta/\eta_{0}$
Water	426·2	8.949	426-2	8% Acetone	35 3 ∙5	10.6	418.7
5% Dioxan	393 ·7	9·7 6	429·4	16.4% Acetone	301.5	12.15	4 09· 3
10% "	366-3	10.52	430·6	<i>v</i> -			

The viscosities of dioxan-water were interpolated from Geddes's data (*ibid.*, 1933, 55, 4832) and those of acetone-water from the International Critical Tables, 5, 22, and from Olson and Konecny (*J. Amer. Chem. Soc.*, 1953, 75, 5801).

In general, the figures given in Table 3 reasonably justify correcting the conductivities of carboxylic acids for the viscosities of the solutions. Following the procedure of MacInnes and Shedlovsky (*ibid.*, 1932, 54, 1429) we can write

$$\Lambda_{\epsilon} = \Lambda_{(\mathrm{HCl})} - \Lambda_{(\mathrm{NaCl})} + \Lambda_{(\mathrm{NaA})}$$

where Λ_i is the conductivity at an ionic concentration c_i and A is the carboxylate anion. Allowing for the viscosity factor, we then have

$$\Lambda^* = \Lambda \eta / \eta_0, \ \Lambda^* c / \Lambda_\epsilon = \alpha$$

Taking K'_{α} as the thermodynamic dissociation constant where dimerisation is not considered, and α as the degree of dissociation, we have

$$K'_a = \alpha^2 c f_{\rm H} f_{\rm A} / (1 - \alpha)$$

The activity coefficients can be calculated from the limiting form of the Debye-Hückel expression, $-\log f_i = 0.509(\alpha c)^{\frac{1}{2}}$. Extrapolation of K'_a against c gives K_a , the true thermodynamic dissociation constant. At any concentration c, if x is the true concentration of HA, then

$$x = (\alpha c)^2 f_{\rm H} f_{\rm A} / K_a$$

and since $[H_2A_2] = (c - \alpha c - x)/2$, the dimerisation constant K_d is given by

$$K_d = 2x^2/(c - \alpha c - x)$$

The resulting calculations are given in Table 4, the conductivity data of Saxton and Darken (*ibid.*, 1940, **62**, 846) being used for formic and *n*-butyric acids, of MacInnes and Shedlovsky for acetic acid (*loc. cit.*), and of Belcher (*ibid.*, 1938, **60**, 2744) for propionic acid. The viscosities of formic and acetic acid solutions were interpolated from data in the International Critical Tables (Vol. 5), those of propionic acid were derived from Landolt-Börnstein's "Tabellen" (Hauptband, p. 157), and those of *n*-butyric acid from the figures of Bury and Grindley (*J.*, 1936, 1003).

TABLE 4. Dimerisation constants at 25°.

10°c	Λ_{ϵ}	Λ^*	10 ⁵ K'.	Ka	10³c	Λ_{ϵ}	Λ^*	10 ⁵ K′.	K,
	Formic ac	:id, $10^5 K_a$ =	= 18.24.		Acetic acid, $10^{5}K_{a} = 1.751$.				
98·86	395·04	17.917	18.21	110	50.00	386.15	7.397	1.740	15.0
18 5·3 0	393.47	13.298	18.20	152	$52 \cdot 30$	386-1 0	7.242	1.743	21.1
200.14	393-24	12.817	18.19	129	100.00	385.32	5.257	1.731	16.5
$207 \cdot 15$	393.17	12·608	18.18	121	119.45	3 85·09	4.822	1.732	21.7
361.80	391.55	9.6740	18.14	133	200.00	384.37	3.731	1.716	$19 \cdot 2$
396.76	391 ·26	9.2611	18.10	97	230.79	384.14	3.478	1.715	21.5
463.43	390·76	8·5968	18.10	117					
546.81	390.22	7.9491	18.09	127		n-Butyric	acid, $10^5 K$	a = 1.519	5
655·63	389-6 0	7.2882	18.04	113	14.412	378.59	$12 \cdot 385$	1.5154	10.5
734 .04	389-2 0	6.9082	18.02	116	20.740	378·3 0	10·365	1.5138	10·6
975.35	388.18	6.0295	17.91	103	30.612	377.95	8·5641	1.5120	11.9
					60·446	377.27	6.1242	1.5045	11.8
3	Propionic a	acid, $10^{5}K_{a}$	= 1.347.		78.623	376-98	5.3762	1.4998	11.6
$75 \cdot 352$	381.06	$5 \cdot 2369$	1.338	22	93.044	376.79	4.9427	1.4935	10.4
101·64	380.70	4.5175	1.335	22.5	123.53	376-44	4·2926	1.4880	11.3
192.95	379·7 0	$3 \cdot 2783$	1.317	15	160.79	376·1 0	3.7588	1.4768	10.7
					200.32	375-81	$3 \cdot 3622$	1.4650	10.4
					$253 \cdot 84$	375.47	$2 \cdot 9805$	1.4514	10.3

Discussion.—The average dimerisation constants, together with those obtained by other methods, are :

		Formic	Acetic	Propionic	n-Butyric
Co	onductivity (25°)	120 ± 12	19 ± 2	20 ± 3	11 ± 0.6
\mathbf{D}	istribution (25°)		28 ª		10 *
\mathbf{F}	p. (0°)		28 *		11 •
	p. (25°)		20 ± 3 a		
	A Davies and Criffiths los of	i b Criffithe	Thonis IInin	orgity of Wales	1059

Davies and Griffiths, loc. cit. • Griffiths, Thesis, University of Wales, 1952.

[1955]

Considering their magnitude, the agreement by different methods is reasonable. Certainly, the present value for acetic acid is in better accord with the independent values than is that of Katchalsky *et al.* (*loc. cit.*).

It cannot be claimed that the viscosity corrections are exact, and a 5% error in these means an error of 15% in K_d . Furthermore, with formic and *n*-butyric acids, where the measurements extend to 3N and 1.2N, respectively, the higher concentrations give K_d values which decrease steadily from those given in Table 4. This may be because errors in the viscosity factor become more important in these regions, or it may be that K_a , the thermo-dynamic dissociation constant, is different from what it is in dilute solutions. Since the dielectric constants of these solutions have not yet been measured, an estimate of possible changes in K_a cannot be made.

Apart from propionic acid, our K_a values are slightly different from those given by the original authors. The reason for this is that their method was to plot the logarithm of the concentration dissociation constants against $\sqrt{c_i}$ and extrapolate. In the present analysis, K_a' is practically constant in very dilute solutions and a more exact extrapolation is possible. A final adjustment was made by trying slight variation in the extrapolated value of K_a until K_d showed no sudden trends with the acid concentration.

THE EDWARD DAVIES CHEMICAL LABORATORIES, UNIVERSITY COLLEGE OF WALES, ABERYSTWYTH.

[Received, March 4th, 1955.]